Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter.
نویسندگان
چکیده
Intracellular recordings were made from identified choroid and ciliary neurons in the ciliary ganglion of the embryonic chick. Choroid neurons, which were innervated by multiple preganglionic fibers, frequently displayed noncholinergic slow excitatory postsynaptic potentials (EPSPs) following repetitive stimulation of the preganglionic nerve trunk. These slow potentials were blocked by high Mg2+/low Ca2+ buffer and were closely mimicked by bath application of substance P, which is known to be present within both populations of preganglionic nerve terminals. Substance P-induced depolarizations desensitized during prolonged exposure, at which time it was no longer possible to evoke slow synaptic potentials. Following manual voltage clamp to resting membrane potential, parallel increases in input resistance were seen during the slow EPSP and the response to substance P, suggesting that the two responses share common mechanisms. Ciliary neurons, which were innervated by a single preganglionic fiber and displayed dual electrical-chemical synapses, did not exhibit slow synaptic potentials and were unaffected by bath application of substance P. The magnitude and time course of fast nicotinic EPSPs elicited in ciliary neurons by 0.5 Hz presynaptic stimulation were also unchanged in the presence of 1 to 3 microM substance P. Although the ciliary and choroid neurons share a common embryological origin in the neural crest, they are specialized for quite different physiological roles. Integration of multiple presynaptic inputs occurs at choroid synapses, mediated by the presence of both subthreshold fast nicotinic EPSPs and the slow EPSP. In contrast, synapses on ciliary neurons have specializations which preclude any integrative function, including single innervation, a high quantal content, electrical coupling potentials, and a lack of slow synaptic potentials.
منابع مشابه
Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy.
The avian ciliary ganglion receives its only recognized input from the nucleus of Edinger-Westphal. This is known to be a cholinergic input. In the present study, using fluorescein isothiocyanate and peroxidase-antiperoxidase immunohistochemical methods, substance P-like and enkephalin-like immunoreactivity has been found within preganglionic terminals of the avian ciliary ganglion. The ciliary...
متن کاملStimulation of Somatostatin Expression in Developing Ganglion Neurons by Cells of the Choroid Layer Ciliary
An important component of neuronal development is the matching of neurotransmitter expression with the appropriate target cell. We have examined how peptide transmitter expression is controlled in a simple model system, the avian ciliary ganglion (CG). This parasympathetic ganglion contains 2 distinct types of neurons: choroid neurons, which project to vasculature in the eye’s choroid layer and...
متن کاملActivin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype
The avian ciliary ganglion contains choroid neurons that innervate choroid vasculature and express somatostatin as well as ciliary neurons that innervate iris/ciliary body but do not express somatostatin. We have previously shown in culture that activin A induces somatostatin immunoreactivity in both neuron populations. We now show in vivo that both targets contain activin A; however, choroid e...
متن کاملChoroid tissue supports the survival of ciliary ganglion neurons in vitro.
It is well established that during in vivo development the neurons of the avian ciliary ganglion are dependent for their survival on structures in the eye. Separate neuron populations innervate intraocular smooth and striated muscle targets. All ciliary neurons survive when cocultured with striated muscle. We demonstrate that when ciliary ganglion neurons are plated on explants of the choroid c...
متن کاملActivin A and follistatin influence expression of somatostatin in the ciliary ganglion in vivo.
An important developmental question concerns whether neurotransmitter phenotype is an inherent property of neurons or is influenced by target tissues. This issue can be addressed in the avian ciliary ganglion (CG) which contains two cholinergic populations, ciliary and choroid neurons, that differentially express the peptide cotransmitter, somatostatin. The present study tests the hypothesis th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 5 10 شماره
صفحات -
تاریخ انتشار 1985